2009

Amanda Cronauer

Manoa Elementary School

School District Of

Thesis Technical Assignment 2

[BUILDING AND PLANT ENERGY ANALYSIS REPORT]

Amanda Cronauer | Mechanical BUILDING AND PLANT ENERGY ANALYSIS REPORT

Table of Contents

Executive Summary	3
Mechanical System Overview	3
Design Cooling Load	4
Assumptions	4
Outdoor Ventilation Rates	4
Lights and Equipment Loads	4
Occupancy	4
ASHRAE Design Indoor and Outdoor Air Conditions	7
Infiltration	7
Additional Assumptions	7
Results	7
Energy Consumption and Operating Costs	9
Assumptions	9
Equipment Efficiencies	9
Supply and Return Fans	9
Domestic Hot Water	9
Utilities	9
Electricity	9
Gas	10
Energy Analysis	10
Design Engineer Energy Analysis	10
Total Energy Consumption	10
Total Energy Cost	11
System Emission Rates	13
Table of Contents	15
Appendix A: Outdoor Ventilation Rates	16
Appendix B: Trace Input Assumptions	18

Executive Summary

The purpose of this report is to perform a building load energy analysis on Manoa Elementary School and also to analyze the building annual energy consumption, operating costs and emissions. Trane Trace 700 was used to perform both the energy load analysis and energy consumption based on the information provided in the design documents.

The modeled design loads were comparable to the actual system design for the most part. Inconsistencies in cooling loads are mainly due to the use of ASHRAE Standard 62.1 to determine zone populations for most spaces, the use of simplified schedules and the assumption of miscellaneous loads in the spaces. A more detailed summary along with all assumptions, schedules, inputs and alterations is included.

The building energy analysis seems to produce a reliable estimation of building energy consumption and cost, however further analysis of space heating appears to be necessary. Manoa Elementary School utilizes both electricity and natural gas to energize their building. Their total energy consumption as modeled was found to be 34,434 MBH for a total energy cost per year of \$87,337 or \$1.23 per square foot. This cost can be reduced by improving the building space heating system which has the highest energy consumption and cost.

Mechanical System Overview

Manoa Elementary School is designed to utilize three variable volume air handling units that serve the classroom spaces and two constant volume air handlers that serve the multipurpose and kitchen areas. The classroom units are equipped with energy recovery ventilators and supply outdoor ventilation air to the classroom and learning spaces. The constant volume systems that serve both the multipurpose and kitchen areas are designed to control occupant comfort and safety in the supplied zones. Schematics showing the zones covered by each air handling unit can be seen in Figures 1 and 2 below.

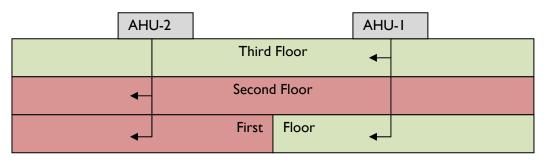


Figure I: Wing A AHU Distribution Schematic

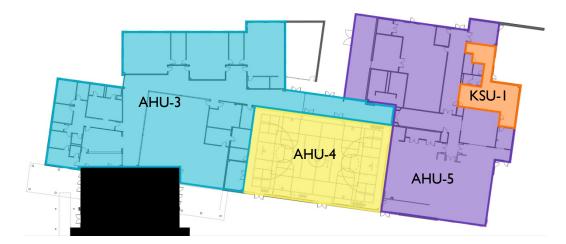


Figure 2: Wing B AHU Distribution

Design Cooling Load Assumptions

Trane Trace 700 was used to model Manoa Elementary School in order to calculate the design cooling and heating loads. All required input parameters were obtained from the architectural and engineering design documents. The major input assumptions are detailed below.

Outdoor Ventilation Rates

Ventilation rates were specified by the design engineer in the mechanical equipment schedules in the mechanical design documents. These values, which are the same as those used in Technical Report I are summarized in Appendix A for reference.

Lights and Equipment Loads

Because Manoa Elementary School is a relatively small building, it was possible to use the designed lighting power densities in the model instead of that prescribed in ASHRAE 90.1. These numbers, which can be seen in Appendix B, were entered into Trace on a watts-per-square-foot basis. Heat gain due to lighting was scheduled based on space type. All spaces except the following were modeled based on the classroom schedule summarized below in Table 1. Table 2 summarizes the schedule used for the multipurpose room and Table 3 summarizes the schedule for spaces served by AHU-5. This utilization schedule is defined in Table 1 below.

School	Year-V	Veekday		Summ
Tin	nes	%	Tin	nes
12am	6am	0	12am	7am
6am	7am	10	7am	8am
7am	8am	50	8am	3pm
8am	11am	100	3pm	5pm
11am	12pm	80	5pm	12am
12pm	1pm	20		
1pm	3pm	100		
3pm	5pm	30		
5pm	12am	0		

Table I: Lighting Schedule- Elementary School Classroom

Summer

%

10

0

		Weekend	l i
	T	imes	%
0	12am	12pm	10
10			
30			

Table 2: Lighting Schedule- Elementary Gym

School Year- Weekday		Summer			Weekend	1
Times	%	Times	%	Ti	mes	%
12am 7am	0	12am 7am	0	12am	12pm	0
7am 8am	50	7am 3pm	10			
8am 7pm	100	3pm 12am	0			
7pm 12am	0					

Table 3: Lighting Schedule- Elementary Kitchen

School Year- Weekday		Summer			Weekend		
Times	%	Times	%	Ti	mes	%	
12am 7am	0	12am 7am	0	12am	12pm	0	
7am 3pm	100	7am 1pm	10				
3pm 5pm	50	1pm 12am	0				
7pm 12am	0						

Electrical equipment loads were input based on recommendations by the design engineer. Manoa Elementary School is a high-tech school and utilizes a significant amount of computer equipment. Table 4 below outlines the entered values for specific space-types of the building on a watts-per-square-foot basis. These loads were assigned to the elementary school schedule for miscellaneous loads to determine the heat gain to the space. This utilization schedule is outlined in Table 5 below.

Table 4: Entered Miscellaneous Electrical Loads for Space Type

	Miscellaneous Equipment Loads										
	Classroom	Corridor	Office	Vestibule	Storage	Restrooms	Library	Multipurpose			
W/sf	0.5	0.25	0.5	0.25	0	0	0.5	0.22			

School Year- Weekday		Summer			Weekend	1
Times	%	Times	%	Ti	mes	%
12am 6am	0	12am 7am	0	12am	12pm	10
6am 7am	10	7am 8am	10			
7am 8am	50	8am 3pm	30			
8am 11am	100	3pm 5pm	10			
11am 12pm	80	5pm 12am	0			
12pm 1pm	20					
1pm 3pm	100					
3pm 5pm	30					

Table 5: Miscellaneous Electrical Load Utilization Schedule

Occupancy

5pm 12am

0

The number of occupants per space was determined in Technical Report I based on the architectural design documents and the ASHRAE 62.1 analysis performed. The occupancy load for all classroom and office spaces is based on moderate activity levels which produce a sensible load of 250 BTU/hour and a latent load of 200 BTU/hour. The multipurpose room is modeled for a high level activity which provides a sensible and latent load of 275 BTU/hour each. The occupancy schedules for classrooms, the multipurpose room and kitchen spaces are summarized in Tables 6, 7 and 8 respectively.

Table 6: Occupancy Schedule- Classrooms

School Year- Weekday		Summer			Weekend	
Times	%	Times	%	Ti	mes	%
12am 7am	0	12am 7am	0	12am	12pm	10
7am 8am	50	7am 8am	10			
8am 11am	100	8am 3pm	30			
11am 12pm	80	3pm 5pm	10			
12pm 1pm	20	5pm 12am	0			
1pm 3pm	100					
3pm 5pm	30					
5pm 12am	0					

Table 7: Occupancy Schedule- Multipurpose Room

School Year- Weekday		Summer			Weekend	
Times	%	Times	%	Ti	mes	%
12am 7am	0	12am 7am	0	12am	12pm	0
7am 8am	50	7am 3pm	10			
8am 3pm	100	3pm 12am	0			
3pm 5pm	50					
5pm 7pm	20					
7pm 12am	0					

Table 8: Occupancy Schedule- Kitchen

Scho	School Year- Weekday		Summer			Weekend		
Т	imes	%	Times	%	Т	mes	%	
12ar	n 7am	0	12am 7am	0	12am	12pm	0	
7ar	n 11am	20	7am 1pm	10				
11ar	n 1pm	80	1pm 12am	0				
1pr	n 3pm	20						
3pm	12am	0						

ASHRAE Design Indoor and Outdoor Air Conditions

Outdoor air conditions are specified in the ASHRAE Handbook of Fundamentals and are based on location. Manoa Elementary is located in a suburb of Philadelphia Pennsylvania therefore weather information for Philadelphia as noted in Table 9 was used in the model. Indoor design temperatures came from the design engineer's specifications and are also included in the table below.

Table 9: Design Indoor and Outdoor Air Conditions

Design Temperatures	
ASHRAE 0.4% Cooling Dry Bulb	92.7 °F
ASHRAE 0.4% Cooling Wet Bulb	75.6 °F
ASHRAE 99.6% Heating Dry Bulb	11.6 °F
Indoor Cooling Dry Bulb	75 °F
Indoor Heating Dry Bulb	70 °F

Infiltration

Manoa Elementary in a newly constructed building and it was assumed to be tightly constructed for this analysis. This assumption defines the infiltration rate as 0.3 air changes per hour.

Additional Assumptions

For the purpose of modeling, all wall and roof construction types were based off the architectural design documents. The amount of glazing was entered in based on take-off areas from the design documents. Appendix B summarizes these and other assumptions made for each typical space.

Results

Table 10 summarizes the results of the energy model detailed above and compares the results to the engineer's design.

7

Modeled vs Designed							
		AHU-1	AHU-2	AHU-3	AHU-4	AHU-5	
Cooling sf/ton	Modeled	373.70	426.83	330.40	63.43	129.80	
	Designed	336.31	272.86	228.49	171.62	170.73	
Cooling Load tons	Modeled	64.40	51.10	38.20	85.20	51.50	
	Designed	71.58	81.50	55.17	31.50	39.17	
Supply Air cfm/sf	Modeled	0.67	0.61	0.44	2.33	1.39	
	Designed	0.73	0.92	1.07	1.48	2.18	
Ventilation Air cfm/sf	Modeled	0.33	0.33	0.23	2.33	0.93	
	Designed	0.29	0.36	0.42	0.55	0.75	

Table 10: Modeled Results versus Designed System

Great effort was put into modeling as accurately as possible, however several discrepancies exist between the design system and the model. The major discrepancies seen in the table above occur in AHU-4 and AHU-5. Further analysis of the model inputs revealed that the space occupancies calculated using ASHRAE Standard 62.1 were drastically larger than the amount that would ever be in the space at any given time. For instance, Standard 62.1 calculated 629 people to be the zone population of the multipurpose room which is almost the total school population. In the event of a school assembly, the partition between the multipurpose room and the cafeteria is retracted meaning the air handling equipment will never service the entire population. Also, this occupant load is modeled using the schedule outline in Table 7 which is unreasonable for such a large population. An additional analysis was run using more reasonable zone populations to determine the magnitude of error caused by population alone. The results are summarized below:

	Zone Population Ad	ljustments		Modeled vs Designed							
		62.1 Adjı	ustment			AHU-4	AHU				
AHU-4	Multipurpose Room	629	150	Cooling sf/ton	Modeled	194.86	172.				
AHU-5	Serving	57	10		Designed	171.62	170.				
	Kitchen	82	20	Cooling Load tons	Modeled	27.70	38.7				
	Dishwash	15	2		Designed	31.50	39.1				
				Supply Air cfm/sf	Modeled	0.95	0.7				
					Designed	1.48	2.1				
				Ventilation Air cfm/sf	Modeled	0.55	0.5				

Table II: Alternate Analysis

It can be seen that these population values result in less error between the designed and modeled systems; therefore this result has been used for the remaining analysis detailed in this report. Additional sources for error in the systems can be caused by the generic schedules used instead of the actual room schedules. For example, it is very unlikely that both music classrooms will be used at once or for the entire day as dictated by the schedule detailed in Table 6 which would cause the modeled cooling load to be higher than the design. Other sources of error are the use of ASHRAE 62.1 values for zone population to be used instead of actual information about the number of people in each space, which as seen above can cause a large margin of error in system design as well as the assumption of values for the miscellaneous loads which could be significantly larger than what was modeled.

0.75

0.55

Designed

Energy Consumption and Operating Costs

Assumptions

Trane Trace 700 was used to estimate the annual energy consumption and operating costs of Manoa Elementary School. Assumptions from the above analysis are valid here along with others described below.

Equipment Efficiencies: Equipment was modeled using the efficiencies and EER's specified in the design documents. A summary of these are included in Technical Report 1 and Appendix C.

Supply and Return Fans: Supply and return fan types modeled were based off the specifications in the design documents and their energy use is modeled using the designed motor horsepower listed on the mechanical equipment schedule. Fan motor mechanical efficiency was assumed to be 75% since no specific information was given.

Domestic Hot Water: Domestic hot water loads for Manoa Elementary School are covered by the two boilers. The utilization schedule used for this parameter was defined in Trace and summarized in Table 12 below.

School Year- We	ekday	Summer		Weekend			
Times	%	Times	%	Ti	Times		
12am 7am	0	12am 7am	0	12am	12pm	0	
7am 8am	50	7am 8am	10				
8am 11am	100	8am 3pm	30				
11am 12pm	80	3pm 5pm	10				
12pm 1pm	20	5pm 12am	0				
1pm 3pm	100						
3pm 5pm	30						
5pm 12am	0						

Table 12: Domestic Hot Water Load Schedule

Utilities

Manoa Elementary School utilizes electricity and gas to power the building. Building designers specify duel fuel gas and fuel oil boilers to be used with gas as the primary source. However this configuration was unable to be modeled using Trace, therefore gas boilers were modeled instead. Specific information including rates is further described below.

Electricity

Manoa Elementary School purchases its electricity from PECO Electric Company, which is a subsidiary of the Excelon Company. Rate Schedule 22 was selected for analysis because it is applicable to churches and schools. This rate structure has no time dependence and the charges are as follows:

Customer Charge: \$0 per month Demand Charge: \$6.21 per kilowatt per month Energy Charge: \$0.07 per kilowatt hour per month for the first 300 kilowatt hours \$0.06 per kilowatt hour per month for 301 to 1200 kilowatt hours \$0.05 per kilowatt hour per month for the remaining kilowatt hours

Gas

PECO services the natural gas to the building at the rates defined by the schedule for General Service Commercial and Industrial. This rate schedule is not dependant on time and the charges are as listed below:

Fixed Distribution Charge: \$25.00 per month Variable Distribution Charge: \$3.7785 per Mcf for the first 200 Mcf \$2.6387 per Mcf for the remaining usage

Energy Analysis

Design Engineer Energy Analysis: Manoa Elementary School was not designed to be a LEED Certified project, therefore an energy analysis done by the project engineer was not necessary or in the project budget.

Total Energy Consumption: As modeled, Manoa Elementary School consumes a total of 1,055,152 kWh and 446 kW from the power company and 224,819 therms of gas per year. Further breakdown of energy consumption for major equipment is summarized below in Table 13.

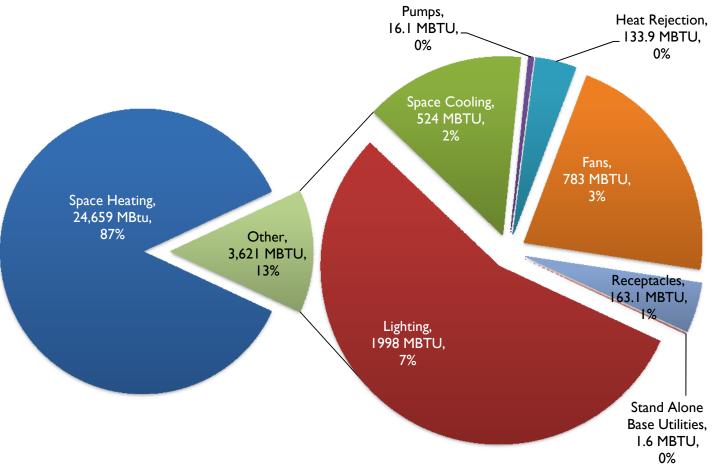
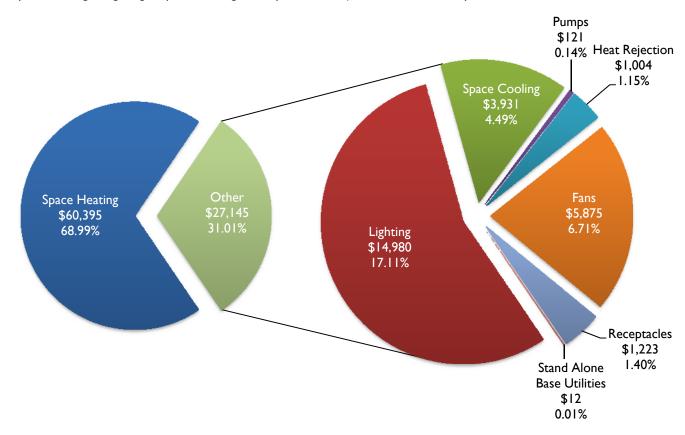

Total Energy Consumption									
Equipment	Utility	Unit	Total						
Lights	Electric	kWh	582,614						
	Peak	kW	67						
Miscellaneous	Electric	kWh	39,874						
	Peak	kW	27						
AHU-1 Fans	Electric	Kwh	55,666						
	Peak	kW	38						
AHU-2 Fans	Electric	Kwh	72,813						
	Peak	kW	40						
AHU-3 Fans	Electric	Kwh	24,310						
	Peak	kW	16						
AHU-4 Fans	Electric	Kwh	17,686						
	Peak	kW	7						
AHU-5	Electric	Kwh	59,181						
	Peak	kW	9						
Chiller	Electric	Kwh	197,592						
	Peak	kW	241						
Boilers	Gas	therms	224,670						
	Peak	therms/hour	642						

Table 13: Total Energy Consumption

In order to analyze the impact each piece of equipment has on the total building energy use it is necessary to convert the values above to the same unit system before comparison. As shown in Figure 3 below, space heating consumes by far the largest amount of energy for the building.

Figure 3: Annual Energy Consumption by Category


Space Heating Lighting Space Cooling Pumps Heat Rejection Fans Receptacles Stand Alone Base Utilities

Total Energy Cost: The total annual energy cost of Manoa Elementary School is \$87,337 or approximately \$1.23 per square foot which is comparable to the value listed is ASHRAE Handbook of Applications. Table 4 in Chapter 35 of this handbook gives a reference value of \$1.09 for the 50th percentile. The data used by the authors of the handbook are from 2003 and are obviously outdated.

The cost of natural gas per therm is significantly less than that of electricity and therefore it is useful to look at the contribution of each piece of equipment to the total energy cost of the building. The results in Figure 4 show that the cost for space heating is still much greater than the rest, but, the fraction of energy cost is smaller than the fraction of energy consumed.

Figure 4: Annual Energy Cost by Category

Space Heating Lighting Space Cooling Pumps Heat Rejection Fans Receptacles Stand Alone Base Utilities

A month by month analysis is also useful when looking for areas of energy savings. Figure 5 shows the monthly combined usage of natural gas and electricity. From this figure it is obvious that during the summer months electric consumption increases because air conditioning is needed and consumption of natural gas consumption increases during the winter months when heating is needed. Figure 6 shows each utilities contribution to the monthly utility bills. The same relationship for heating and cooling described above is also seen here. The figures clearly show that space heating controls both energy consumption and monthly utility costs and therefore energy saving measures should be focused here. A more efficient heating system design and further analysis of the model is necessary to determine what energy saving measures would be most effective.

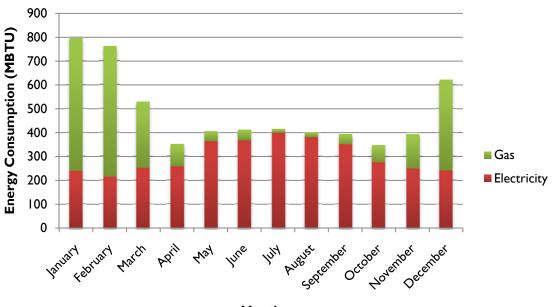
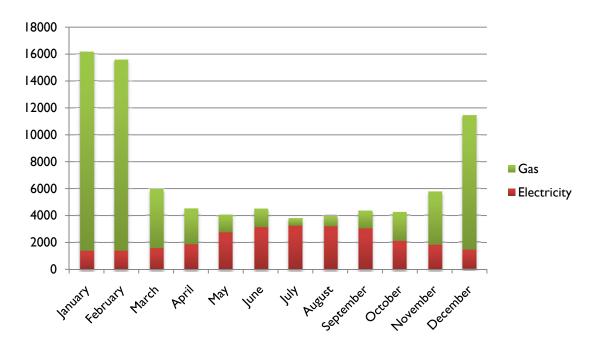



Figure 5: Monthly Combined Natural Gas and Electric Consumption

Figure 6: Monthly Combined Natural Gas and Electric Cost

System Emission Rates

Emission rates for CO_2 , NO_x , SO_x and particulates were calculated using the total energy consumption described above in conjunction with the energy emission factors found by the National Renewable Energy Laboratory. According to NREL, Pennsylvania is a part of the RFC Eastern Grid Interconnection as seen in Figure 7 below.

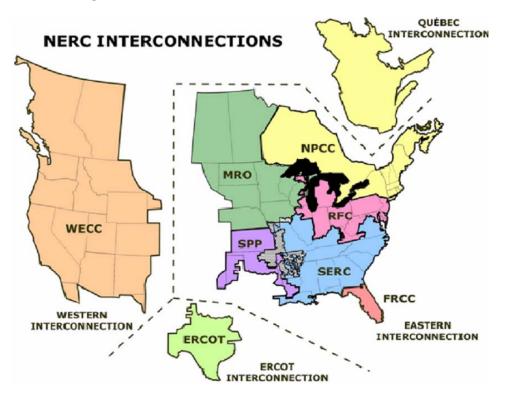


Figure 7: North American Electrical Grid Interconnections

The source emission factors are determined based on the percentages of fuels used in creating the electricity. For the Eastern Interconnection, bituminous coal, nuclear, sub-bituminous coal and natural gas are the main fuels used to generate electricity. Total source pollution emissions generated by the use of electricity and natural gas by Manoa Elementary School are shown in Table 14 and Table 15.

Table 14: Electric Pollution Emissions

	Total Electricity Usage	Electricity Emission Factors	Total Pollution
	[kWh]	[lb pollutant/kWh]	[lbs]
CO2		1.64E+00	1,727,198.80
NOx	1,053,170	3.00E-03	3,159.51
SOx	1,055,170	8.57E-03	9,025.67
PM 10		9.26E-05	97.52

Table 15: Natural Gas Pollution Emissions

	Total Gas	Natural Gas	Total
	Usage	Emission Factors	Pollution
	[Mcf]	[lb pollutant/Mcf]	[lbs]
CO2		1.16E+01	2,606,172.00
NOx	224,670	1.64E-02	3,684.59
SOx	224,070	1.22E+00	274,097.40
PM 10		8.17E-04	183.56

References

ASHRAE. 2007, ASHRAE, <u>Handbook of HVAC Applications.</u> American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc., Atlanta, GA

Deru, M., & Torcellini, P. (2007). Source Energy and Emission Factors for Energy Use in Buildings. Golden: National Renewable Energy Laboratory.

H.F. Lenz Company. 2005-2007. Mechanical Construction Documents. H.F. Lenz Company, Johnstown, PA.

H.F. Lenz Company. 2005-2007. Electrical Construction Documents. H.F. Lenz Company, Johnstown, PA.

H.F. Lenz Company. 2005-2007. Plumbing Construction Documents. H.F. Lenz Company, Johnstown, PA.

McKissick Architects, Inc. 2005. Architectural Construction Documents. McKissick Architects, Harrisburg, PA.

Trane Company. 2007. Trane Trace 700 Help File. American Standard Inc.

Appendix A: Outdoor Ventilation Rates

	AHU-1			AHU-2			AHU-3	
Room Number	Room Name	Vpz	Room Number	Room Name	Vpz	Room Number	Room Name	Vpz
101	SE-1 Classroom	600	107	First Grade Classroom 1	1200	129	Administration	200
102	SEM-2 Classroom	500	109	First Grade Classroom 2	1200	130	Reception	580
103	SEM Classroom	600	112	Kindergarten Classroom 2	1200	131	Hallway	100
104	SEM-3 Classroom	500	113	Conference	100	132	Nurse	275
105	SE-6 Classroom	1200	115	Storage	100	132.2	Exam Room	125
106	Kindergarten Classroom 1	1200	117	First Grade Classroom 3	1200	133	Hallway	100
111	Corridor	200	118	Kindergarten Classroom 3	1200	134	Conference	175
124	Faculty Work Room	350	119	First Grade Classroom 4	1200	135	Conference	425
126	Vestibule	615	120	Faculty Work Room	120	136	Guidence	250
301	SE-4 Classroom	1000	121	Corridor	400	139	1st	200
302	Fifth Grade Classroom 2	1000	201	SE-3 Classroom	1500	140	Principal	500
304	Storage	100	202	Second Grade Classroom 2	1000	141	Corridor	200
305	Fifth Grade Classroom 1	1200	204	Storage	100	142	Library	2895
306	Girls Restroom	100	205	Second Grade Classroom 1	1200	142.1	Storage	75
307/318	Corridor	400	206	Girls Restroom	100	143	Office	150
308	Boys Restroom	100	207 & 228	3 Corridor	500	144	IT Work Room	225
309	Fifth Grade Classroom 3	1200	208	Boys Restroom	100	145	Music Room	1400
310	Fifth Grade Classroom 1	1000	210	Second Grage Classroom 4	1000	145.1	Storage	100
313	Fourth Grade Classroom 3	1200	213	Third Grade Classroom 3	1200	146	Faculty Dining	600
314	Fourth Grade Classroom 4	1000	214	Third Grade Classroom 4	1000	147	Music Room	1200
315	Reading Seminar	600	215	SEM Classroom	600	147.1	Storage	100
316	SE Classroom	1200	216	Seminar Learning Support	600	149	Art Room	1200
317	Speech & Language Seminar	600	217	Gifted Seminar	600	149.1	Art Storage	75
322	Faculty Meeting	140	218	Seminar Learning Support	600	150	Corridor	1075
323	Faculty Planning	140	222	Faculty Meeting	140	151	Corridor	1275
324	Fourth Grade Classroom 2	1000	223	Faculty Planning	140	152.1	Gym Office	100
325	Fourth Grade Classroom 1	1200	224	Third Grade Classroom 3	1000			
326	Storage	250	225	Third Grade Classroom 1	1200			
327	SE-5 Classroom	1200	226	Storage	250			

Amanda Cronauer | Mechanical BUILDING AND PLANT ENERGY ANALYSIS REPORT

	AHU-4			AHU-5	
Room Number	Room Name	Vpz	Room Number	Room Name	Vpz
152	Multipurpose Room	5800	155	Ramp	150
			156	Cafeteria	1880
			158	LCI	3420
			159	Serving	840
			160	Kitchen	1000
			161	Dish Wash	100
			163	Office	100
			164	Dry Storage	100
			166	Locker	100
			168	Corridor	300
			169	Janitors Office	100

17

Appendix B: Trace Input Assumptions

Typical Classroom:

💭 Create	Rooms - Sin	gle Workshee	et									
Alternative Room des Templates	scription AHU-	I 101 SEM CLAS		_ength	. ∀idth							Apply <u>C</u> lose
Room	Default Default Default Default 1A	•	Floor Roof E Wall Description I Wall 1	ft 0ft quals floor ength (ft) 31.75	860	ft Direction 234 324 0	% Gia 0 0	ss or Qty 1 0	Length (ft 1 0) Height (ft) 91	•	New Room
			Internal loads People Lighting Misc loads	33 0.84	People W/sq.ft W/sq.ft	•	Hea	s Iling vent ating vent / minimum	15	cfm/person cfm/person % Clg Airflow	•••	
<u>S</u> ingle	Sheet	<u>R</u> ooms	Roo <u>f</u> s		<u>W</u> alls		Int Lo	pads	Air	flows	E	artn/Floors

Typical Restroom:

Create	Rooms - Si	ngle Workshe	et									_ = 🛛
Alternative Room des		I-1 306 RESTRO	ом		•							Apply Close
Templates	s			Length	Width							
Room	Default	•	Floor	1 ft	689	ft						New Room
Internal	Default	•	Roof C	0 ft	0	ft						Сору
Airflow	Default	•	۲	Equals floor								Delete
Tstat	Default	-										
Constr	34	•	Wall Description	1	11-1-1-1-1-100	Disation	% CI-		1	a) 11-:-La (6)		
			Wall - 1	Length (ft) 26.5	Height (ft)	Direction 54	76 GIA	iss or Qty	Length (f	t) Height (ft)	-	
				6.83	12.16667	324	0	0	0	0		
				0	12.16667	0	0	0	jo	0	-	
			Internal load	s			Airflow	S				
			People	0	People	-	Cod	oling vent	50	cfm/person	-	
			Lighting	1.21	W/sq ft	-	He	ating vent	50	cfm/person	-	
			Misc load	ds 0	W/sq ft	•	VA	/ minimum		% Clg Airflow	•	
<u>S</u> ingle S	Sheet 🗌	<u>R</u> ooms	Roo <u>f</u>	s	<u>W</u> alls		<u>I</u> nt L	oads	A	irflows	P	artn/Floors

Typical Corridor:

📁 Create	Rooms - Si	ngle Workshe	et									
Alternative Room des		-1 307 CORRIDO	В		•							Apply Close
teach 1	s Default Default Default 34	•	Floor 1 Roof C 0 @ Eq Wall	ength ft ft juals floor ength (ft)	0 Height (ft) 12.16667 12.16667	ft ft Direction	% Glass	s or Qty 0 0	Length (f 0 0	t) Height (ft)	•	New Room
			Internal loads People Lighting Misc loads	0	People W/sq.ft W/sq.ft	•	Heati		0.05	cfm/sq ft cfm/sq ft % Clg Airflow	•	
<u>S</u> ingle	Sheet 🗌	<u>R</u> ooms	Roo <u>f</u> s		<u>W</u> alls		Int Loa	ads		irflows	E	artn/Floors

Typical Office:

📁 Create	Rooms - Si	ngle Workshe	et									
Alternative Room des		-3 140 PRINCIPA	аЦ		•							Apply Close
Templates Room Internal Airflow Tstat Constr	s Default Default Default B13	V V V	Floor Roof (* Wall Description Wall - 1 Wall - 2	Length ft 0 ft Equals floor Length (ft) 12.48333 25 0	0	ft ft Direction 242 152 0	% Gla	ss or Qty	Length (1 1	ft) Height (ft) 43 21.33333 0	*	New Room
			Internal load People Lighting Misc loa	1 1.01 ds 0.5	People W/sq ft W/sq ft	•	Hea VA\	ling vent ating vent / minimum	20	cfm/person cfm/person & Clg Airflow	•	
<u>S</u> ingle	Sheet	<u>R</u> ooms	Roo	<u>fs</u>	<u>W</u> alls		Int Lo	bads	<u>6</u>	Airflows	<u> </u>	artn/Floors

Multipurpose Room:

🖱 Create	Rooms - Sir	ngle Workshe	et									
Alternative Room des		4 MULTIPURPO	SE ROOM		•							Apply Close
Templates Room	s Default	•	L Floor 1	.ength ft	Width 5406	ft						New Room
Internal Airflow	Default Default	•	Roof C 🖸	ft quals floor	1	ft						Сору
Tstat Constr	Default GYM	•	Wall									Delete
			Wall 1 9	.ength (ft) 14.25	28	Direction 152	% Gla	ss or Qty	Length (fi 1	270	-	
				0.66666 14.25	10 15	62 332	0	1	1 1	308 60.75	-	
			Internal loads.				Airflow	s				
			People	649	People	-				cfm/person	-	
			Lighting	0.75	W/sq.ft	-		ating vent		cfm/person	-	
			Misc loads	0.22	W/sq ft	-	VA	/ minimum		% Clg Airflow	-	
<u>S</u> ingle :	Sheet	<u>R</u> ooms	Roofs		<u>₩</u> alls		Int Lo	pads	A	irflows	P	artn/Floors

Library:

💭 Create Roo	oms - Single	e Workshe	et									
Alternative 1 Room descript	ion AHU-31	42 LIBRARY										Apply
Internal Del Airflow Del Tstat Del			Floor 1 Roof C & E Wall Description L Wall - 1 & all - 2 E	Length (ft quals floor Length (ft) 30 54 59,66666	0	ft tt Direction 152 242 332	% Gla 0 0	ss or Qty 1 0 0	Length (ft 1 0) Height (ft) 321	•	New Room
			Internal loads. People Lighting Misc loads	62 1.23	People W/sq.ft W/sq.ft	•	Hea	s Iling vent ating vent / minimum	15	cfm/person cfm/person % Clg Airflow	•	
Single Sheet Rooms		<u>R</u> ooms	Roo <u>f</u> s		Walls		Int Loads		Airflows		Partn/Floors	

Kitchen:

🗩 Create	Rooms - S	ingle Workshe	et									
Alternative Room des		J-5 160 KITCHEN			•							<u>Apply</u>
Templates Room	Default	•	Floor	.ength ft	Width 840	ft						New Room
	Default Default Default	-	Roof C 🖸	ft quals floor	Jo	ft						C <u>o</u> py Delete
Constr	B14	•		.ength (ft) 0.33333	Height (ft)	Direction	% Gla	iss or Qty	Length (ft) Height (ft)		
				0.83333	14	62 0			0		-	
			Internal loads			Airflows						
			People Lighting Misc loads	82 1.41	People W/sq.ft W/sq.ft		Hea	oling vent ating vent / minimum	<u> </u>	cfm/person cfm/person % Clg Airflow		
<u>S</u> ingle :	Sheet 🗌	<u>R</u> ooms	Roo <u>f</u> s		<u>W</u> alls		Int Loads			Airflows		artn/Floors